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ONE CLASS OF SEMILINEAR SOBOLEV TYPE EQUATIONS AND PHASE
SPACES

The solvability of the Cauchy problem u(0) = wo of an semilinear differential operator equation Lu =
Mu + N(u) is under consideration. The abstract results are illustrated by the Cauchy — Dirichlet problem
for the Hoff equation and for the Oskolkov equations.

Introduction.

Let {l and § be Banach spaces, and let operators L € L(4; §) (i. e. linear and continuous)
and M € CI(U:F) (i. e. linear, closed and densely defined). We shall study the Cauchy
problem

u(0) = uo (0.1)

for the differential operator equation
Li = Mu + N(u), (0.2)

where ker L # {0}, and N : domN C U — § is generally speaking nonlinear operator. We
shall call the equation (0.2) a semilinear Sobolev type equation, in contrast to linear Sobolev
type equation

L =-Mu. (0.3)

Abstract results on problems (0.1), (0.2) and (0.1), (0.3) will be illustrated by specific
examples having applied relevance. If 4 = § = R", and operators L, M are matrixes of order
n, then the degenerate system of ordinary differential equations (0.3) is the generalization of
the Leontief system of input-output economics [1]. Another concrete example of the problem
(0.1), (0.3) is the initial-boundary value problem on the cylinder €2 x R for the Batenblatt —
Zheltov — Kochina equation

(A= A)p: = aAp (0.4)

modeling the pressure dynamics of the fluid filtered in a fissured porous medium |[2]. In
addition, the Eq. (0.4) describes moisture transfer in soil [3]| and the process of "two-
temperatures"heat conductivity [4].

The famous concrete example of the abstract problem (1), (2) is the initial-boundary
value problems on 2 x R for the Hoff equation

(A + A)h; = ah + Bh®,

which for n = 1 models the dynamics of bulging of an /-beam [5]. The unknown function
h = h(z,t) has the physical meaning of deviation of the beam from the vertical under
constant load; the numerical parameters A € R, and «, 8 € R characterize the magnitude
of the load and the properties of the material, where the positivity of \ is essential.

Next concrete example of the abstract semilinear problem (0.1), (0.2) is the Cauchy -
Dirichlet problem on € x R for the Oskolkov equations

A=V, =vV— (v-V)vr—Vp, V-.-v=0,
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which generalizes the well-khown Navier-Stokes equations to the case of a non-Newtonian
fluid, the velocity of which is the absence of stress decays exponentially [6]. Here the vector
function v = (vq,...,v,), vx = vk(x,t) has the physical sense of the velocity of the fluid
and the function p = p(x,t) corresponds to the fluid pressure. The parameter v € R,
characterizes the viscous properties of the fluid, and the parameters A € R the elastic ones,
where the possibility A € R_ is confirmed experimentally.

One of the first explorer of the Cauchy problem for the equation Auy + w?u.z = 0
modeling small oscillations of the roating fluid was S.L. Sobolev [7]. Since equations and
system of the equations in partial derivatives unsolved with respect to the highest derivative
used to be called Sobolev type equations |8, 9]. We are going to use this term for classification
of abstract equations of the forms (0.2) and (0.3) refusing from the ferms "pseudoparabolic
equations"[10] and "equations non Cauchy — Kovalevsky type" [11].

M.L Vishik [12] and S.G. Krein and his students [13] were the first who began to study
abstract equations of the form (0.3). Nowdays the theory of the Sobolev type equations
exists in two paradigms. To the first paradigm the works in which equations and systems
of the equations in partial derivatives are explored should be concerved. This direction is
exact continuation and development of the Sobolev’s results. One can find modern results
of this paradigm in [14]. And to the second paradigm the works in which the object of
an investigation is the abstract equations (0.2), (0.3) should be concerned. Concrete initial-
boundary value problems for the equations and systems of the equations in partial derivatives
unsolved with respect to highest derivative are showh as the illustrations of the abstract
results. Many interesting results of this paradigm are contained in [15, 16, 17].

In contrast with all these results our approach bases on the concept of the phase space.
The idea of the method consists in reducing Eq. (0.2) or Eq. (0.3) to

= Su+ F(u) (0.5)

or
% = Su (0.6)

respectively, given, however, not all of 4, but on (smooth, Banach) manifold imbedded in
$l. This manifold contains all initial values ug, for which problems (0.1), (0.2) or (0.1), (0.3)
are well-possed. There exist many results devoted to "phase space method" now. The must
important results were obtaind by the autor and his students.

The paper consists of four sections, except of Introduction. The first section is of
propaedeutic character. It contains already known results [18], that are presented in our
arrangement. The main goal of this section is to show the construction of resolving semigroups
of the Eq. (0.3). The second section contains some applications of the described abstract
results.

In the third section we carry out abstract discussions, consisting in the application of
the modified Lyapunov — Schmidt method to studying of the problem (0.1), (0.2). Remark
that the Cauchy problem (£(0), ¢(0)) = (0,0) for equations

0=n—-¢&, n=¢ (0.7)

has two solutions stationary (0,0) or nonstationary (t/2,¢?/4), but the same problem for
equations
0=n-€, n=£+1 (0.8)
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has not solution. Since Eq. (0.7) and Eq. (0.8) are simplest examples of the Eq. (0.2) then the
problem (0.1), (0.2) is not well-posed in general. This simple observation shows the necessity
of the restriction of the notion of the solution to the problem (0.1), (0.2).

The fourth section contains some examples arised in applications. We apply obtained
abstract results to the Cauchy — Dirichlet problem for the Hoff equations and for the Oskolkov
equations. The main goal of this section is to study the morphology (i. e. structure, lattice,
organization) of the phase space of a concrete interpretation of the problem (0.1), (0.2).

In conclusion let us agree to all arguments that are carried out in real Banach spaces,
but when "spectral" questions are considered, the natural complexification is introduced:
all contours are oriented by "counterclockwise" motion and bound domains that lying on
the "left hand" side under such motion; symbols I and © denote the "unique" and "null"
operators respectively whose domains of definition are clear from context.

1. Relatively o-bounded operators and degenerate analytic groups.

Let 4 and § be Banach spaces, operators L € L(4;F) and M € Cl(4; F). Assuming
the existence of the operator L' € L(F; ) the (0.1), (0.3) will be replaced by a pair of
equivalent problems

a=Su, w0 =u; f=Tf  f(0)=fo, (1.1)
which will be considered in the context of the problem
v = Av, v(0) = vp. (1.2)

If the operator A € L(Y), where U is a Banach space, then, as is well known, there exists a
unique solution v = v(t) of problem (1.2) for every vy € U of the form v(t) = V'vy, where
{V*:t e R} is a group of solving operators of Eq. (1.2) of the following form
V= ——1- (ul — A)~te* dp. (1.8)
2w Jr

Here, ' = { € C: |u| = r} is the contour bounding the domain containing the spectrum
o(A) of the operator A. The group (1.3) in the obvious way can be analytically extended to
the whole complex plane.

Since operators S and T in problems (1.1) are similar, the operator S € £(4) precisely
when the operator 7' € £(F). In this case, therefore, the pair of operators (L, M) generates
a pair ({U'}, {F*}) of analytical groups of the form

Bt = —l—,f(;u.L — M) 'Le"dy, F'= L.fL(ﬂL — M) te*tdy,
2w Jp 2mi Jr

where the contour I' is the same as in (1.3). In this case the group {U* : t € R} contains
solving operators of Eq. (77).

The main purpose of the present paragraph is to generalise these classical results to the
case of an uninvertible operator L, in particular, when the kernel ker L # {0}. The most
important results in this area were obtained by G.A. Sviridyuk. A significant contribution
to this theory has been made by T.G. Sukatheva and L.L. Dudko [18].

Let 4l and § be Banach spaces, operator L € L(4; §), and operator M : domM C U — F
be linear and closed.

128
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DEFINITION 1.1. 4 set p“(M) = {u € C: (uL— M)~ € L(F; )} is called a resolvent set of
an operator M with respect to an operator L (or, briefly, L-resolvent set of an operator M ).
The set X (M) = C\p" (M) is called spectrum of an operator M with respect to an operator
L (or, briefly, L-spectrum of an operator M ).

REMARK 1.1. When there ezists an operator L™ € L(F;4l) L-resolvent set and L-spectrum
of the operator M coincide with the resolvent set and the spectrum of the operator L™'M (or
the operator ML™').

REMARK 1.2. The L-resolvent set of the operator M 1is always open, and, consequently, the
L-spectrum of the operator M 1is always closed.

DEFINITION 1.2. Operator functions (uL — M)™', Ry(M) = (uL — M)™'L, L;(M) =
L(uL — M)~ are called respectively a resolvent, right resolvent, and left resolvent of an

operator M with respect to the operator L (or, briefly, L-resolvent, right L-resolvent, and
left L-resolvent of the operator M ).

REMARK 1.3. When there exists an operator L™ € L(F;4) the right (left) L-resolvent of
the operator M coincides with the resolvent of the operator L™'M (ML™!).

LEMMA 1.1. If p*(M) # O, then L-resolvent, right and left L-resolvents of the operator M
are continuous on p*(M).

THEOREM 1.1. If pX(M) # 0, then the L-resolvent, right and left L-resolvents of the operator
M are analytic in p"(M).

DEFINITION 1.3. An operator M is called spectrally bounded with respect to the operator L
(or briefly, (L,o)-bounded ), if

JaeR: VueC (lul>a)=(nep"(M)).

REMARK 1.4. Let domM = Y and let there exist an operator L~ € L(F; ). The operator
M is (L,0)-bounded precisely when the operator LM (or ML) is bounded.

REMARK 1.5. Let an operator L € L(U;F) be compact. Then either p*(M) = (0, or the
L-spectrum o™ (M) of the operator M 1is discrete, of finite multiplicity and is condensed only
to the point o0o. Indeed, let o € p*(M), then

(uL - M) ' = (DK + 1) Y(aL - M)™!

where A = yu — «, and the operator K = (oL — M)™'L is compact. Therefore, in this case
the operator M is not (L, o)-bounded.
Let the operator M be (L, 0)-bounded, and the contour I' = {u € C: |u| =r > a}. Let
us consider integrals of F. Riss type
1

P=_—— L M

f LL(M)dpu.

Zm

LEMMA 1.2. Let the operator M be (L, c)-bounded. Then operators P : 4 — U and Q : § —
§ are projectors.
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Let us assume 4° = ker P, F° = ker Q; U' = imP, §' = imQ. Let the restriction of the
operator L (M) to U* (domM N uF), k = 0,1 be denoted by L; (M}).

THEOREM 1.2. Let an operator M be (L,o)-bounded. Then
(i) the actings of operators Ly : Uk — F*, M, : domMNU* — F*, k = 0,1 are decomposed;
(ii) there exist operators My € L3 U% and L' € L(FUb);
(iii) the operator M, € L(U'; F").
If the set pL(M) # 0, we can substitute the equation Li = Mu for a pair of equations
equivalent to it
RE(M)4 = (aL — M)™'Mu, (1.4)
LE(M)f = M(aL — M)™'f, (1.5)
which will be regarded as specific interpretations of the equation
Av = Bv, (1.6)

where operators A, B € £(), and U is some Banach space. The solution of the Eq. (1.6) is
then a vector function v € C'(R;U) satisfying this equation.
DEFINITION 1.4. The mapping V- € CY(R; L(D)) is called a group of solving operators of
Eq. (1.6), if

(3) 1.'31_.-'1‘. _— I.’s+t VS,t = R’.

(ii) for every vy € Y vector function v(t) = V'v, is the solutions of Eq. (1.6).

Let us identify the group with its set of values {V* : ¢ € R}. The group {V*: t € R} will
be called analytical, if it can be analytically extended to the whole complex plane retaining
its properties (i) and (ii) from Definition 1.4.

THEOREM 1.3. Let an operator M be (L, o)-bounded. Then there exists an analytic solving
group of Eq. (1.4) (Eq. (1.5)).

Let the contour I' = {x € C: || = r > a}, then the required group is the integral of
Danford—Taylor type

QM]RL (M)et dy, teR,

(Ft 2:” L;(M)e dp, tER).

REMARK 1.6.Projectors P and Q are obviously the identities of solving groups {U" : t € R}
and {F":t € R} respectively. Therefore,

Ut=U'P = % f (uL1 — My) 'L Pe* = ¢ P,
r
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where the operator S = LT'M; € L(U'). If the operator T = MyL7' € L(F"), then F' =
Fi'Q = e'TQ.
2. Phase spaces of linear Sobolev-type equations.

Let us consider the linear equation
At = Bu, (2.1)
where operators 4, B € L(), U is Banach space, and {V*' : ¢ € R} is solving analytical
group of the Eq. (2.1).

DEFINITION 2.1. A set kerV: = {v € B : V' =0 Vt € R} is called a kernel, and a set
imV' = {v € B :v="V%} is called an image of the analytical group {V*':t € R}.

Obviously ker V- = ker V¥, imV =imV"? Vt € R, therefore Definition 2.1 is correct.

DEFINITION 2.2. A set B C U s called a phase space of Eq. (2.1), if
(i) any solution v = v(t) to Eq. (2.1) lies in P, t.e., v(t) € PVt € R;
(ii) for every vy € P there exists a unique solution v € CY(R;U) of Cauchy problem
v(0) = v for Eq. (2.1).
Return to operators L € L(U; §) and M € CI(: §).
THEOREM 2.1. If an operator M be (L, o)-bounded, then

oC o0
(WL — M)~ == p*H*MG' (1 - Q)+ ) _u*55'Q,
k=0 k=1

where operators H = My 'Ly, S = LT'M;, and |u| > a.

DEFINITION 2.3. The point oo is called removable singular point, pole of the order p € N,
essential singular point of the L-resolvent (uL — M)™' of an operator M, if respectively
H=0, HP # 0 and H**' =0, H* # 0 Vk € {0} UN.

Set a € p*(M), and let us consider the parr of equations

RE(M)i = (aL — M)™*Mu, (2.2)

LE(M)f = M(aL — M), (2.3)
which are regarded as concrete interpretations of the Eq. (2.1).

THEOREM 2.2. Let an operator M be (L, oc)-bounded, whereas oo is a removable singularity
or a pole of order p € N of the L-resolvent of the operator M. Then the phase space of
Eq. (2.2) (Eq. (2.3)) coincides with the image of the solving group {V' : t € R} (solving
group {F*' :t € R}).

REMARK 2.1. If oc is essential singularity, then the Theorem 2.2 is false (see the counter-
exzample in [18]).

REMARK 2.2. If is easy to see that the phase space of the Eq. (2.2) coincides with the phase
space of the equation (0.3).
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EXAMPLE 2.1. Degenerate system of ordinary differential equations.
Let L and M be square matrices of the order n, det L = 0. Let us consider the (0.1),
(0.3).

LEMMA 2.1. If there ezist a point a € C such that det (aL — M) # 0, then the operator

M is (L,o)-bounded, while oo is a nonessential singularity of the L-resolvent of the operator
M.

THEOREM 2.3. If the condition of Lemma 2.1 is satisfied, then for every initial value uy €
M={uel: (I-QMu=0} (=U') there erists a unique solution u € C'(R,IM) that
can be represented by the formula

u(t) = %[“Rﬁ(ﬂf)e”tugdp}

where I is a countour as above.
REMARK 2.3. [t is obvious that the set M (= U') is the phase space of the Eq. (0.3).

EXAMPLE 2.2. The Barenblatt—Zheltov—Kochina equation.
Let 2 C R" be a bounded domain with a boundary 9% of the class C*. Let us seek a
function u = u(x, t) satisfving in the cylinder 2 x R the equation

(A= A)u, = aAu (2.4)
and the Cauchy—Dirichlet conditions
u(z,0) = up(x), =z € Q; u(z,t) =0, (x,1) €92 xR (2.5)

The problem (2.4), (2.6) is reduced to the problem (0.2), (0.3) by taking as spaces il
and § either Sobolev spaces { = {u € Wit3(Q) : u(z) =0, z € 90}, §F = WKQ), or
Holder spaces U = {u € C*"*™#(Q) : u(z) =0, z € 8Q}, T = C*™*(Q), where 1 < p < o0,
0<pu<l1l,k=0,1,... Then the operators L = A — A: 4 - F, M =ald: U — § will be
linear continuous and Fredholm (i.e., indL = ind = 0).

LEMMA 2.2. The operator M is (L,c)-bounded, while oo is a removable singularity of the
L-resolvent of the operator M.

THEOREM 2.4. (i) if A & o(A), then for every uy € U and f € § there exists a unique
solution u € CY(R;U) of the problem (2.4), (2.5), which can be represented as

=
u(t) = Y e/ (yo, 1) .
k=1

(it) if X € o(A), then for every up € My = {u € U: (u, k) =0, Ay = A} there exists a
unique solution u € C'(R; M) of the problem (2.4), (2.5), which can be represented in the

following form:

u(t) =Y _ eHOM) (o, 01)gn.
k=1

o

Here, {¢r} and {\;} are sets of orthonormalised eigenfunctions and their respective
eigenvalues of the homogeneous Dirichlet problem for the Laplace operator in the domain €2,
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numbered with respect to nonascending of the eigenvalues allowing for their multiplicity. The
primed summation symbol denotes the absence of terms with numbers k£ such that A = A.

3. Quasistationary trajectories.

Let 81 and § be Banach spaces, operators L, M € L(4;F) and N € C*(4l; §). Consider
the Cauchy problem for semilinear Sobolev-type equation

Li = Mu+ N(u), u(0)= up. (8:1)

If on operator L is continuously invertible, then the problem (3.1) is reduced trivially to the
problem
= Su+ F(u), u(0)=uy, (3.2)

with an operator S € L(4) and a nonlinear operator F' € C* (). The existence of the
unique solution u € C®((—tg,tp); Y) to the problem (3.2) for some t; € R, is the classical
Cauchy problem.

Let us consider the problem (3.1), where the operator L is uninvertible, more precisely,
ker L # {0}. Let us suppose in addition that the operator M is (L,o)-bounded. Then we
can reduce the Eq. (3.1) to the equivalent system

Hiu® = u® + M;Y(I — Q)N(u), (3.3)

ul = Sul + LTIQN(u), i
where u! = Pu, u® = u — u!, the operator P(Q) is the projectior onto ' (F') along ° (),
and operators H = My 'Ly € L(U°), S = L7'M; € L(4!). The simplest examples (0.7),
(0.8) convice us that the Cauchy problem for Eq. (3.3) is not well-posed in general.

DEFINITION 3.1. A solution u = u(t) to the problem (3.1) is called a quasistationary
trajectory of the equation (3.1) passing through the point ug if Hu’(t) = 0 for every t €
(_th tO)

Recall that a stationary solution of the Eq. (3.1) is a quasistationary trajectory, but
the converse is false. In the above mentioned example (0.7) the quasistationary trajectory
coincide with the stationary one, i. e. with the point (0,0). Another system (0.8) has not
stationary solution, and therefore it has not quesistationary trajectory.

To find qusistationary semitrajectories of the Eq. (3.1) we introduce in consideration a
set M= {u € U; (I —Q)(Mu+N(u)) = 0}. It is obvious that if u = u(t) is a quasistationary
trajectory, then it lies in 9 (i. e. u(t) € M for every t € (—to,%p)). Let a point uy € M.
Set u} = Puy and by O} C 4! define a neighborhood of the point uj € {*. If there exists a
C°-diffeomorphism 6 : Of — 9M such that 6~' = P, then we shall call the set 9 a Banach
C>®-manifold at the point ug. If the set 9 is a Banach C'*°-manifold at every point uy € 9N,
then we shall call the set 9t a Banach C*®-manifold modeling by the subspace 4'. Connected
Banach C'*°-manifold is called a simple Banach C*-manifold if every its atlas is equivalent
to the atlas containing only a map.

THEOREM 3.1. Let an operator M be (L,o)-bounded, moreover, oo be a removable singular
point or a pole of the order p € N. Let an operator N € C®(U;F), and the set M be a
Banach C*-manifold at the point ug. Then for ty € Ry there exists a unique quasistationary
trajectory u = u(t), t € (—to,to), of the Eq. (3.1) passing through the point uy.

133



G.A. Sviridyuk

4. Phase spaces.
Let us return to the Eq. (0.2).
DEFINITION 4.1. A set P C U is called a phase space of the Eq. (0.2), if

(1) every solution u = u(t) of the Eq. (0.2) lies in P, i.e. v(t) € PVt € (—to, to);

(ii) for every ug € P there exists a unique solution to the problem (0.1), (0.2).

In this section we shall consider such examples, in which the phase space is simple
Banach C'*°-manifold and coincides with the set 9.

EXAMPLE 4.1. The Hoff equation.
Let Q C R" be bounded domain with C* boundary 9. The Hoff equation

(A + A, = —au — Bu® (4.1)
for n = 1 models the H-beam buckling dynamics. The initial-boundary value problem
u(,0) = uola), v€Q ur,)=0, (x,t)€IMxR (42)

for Eq. (4.1) was first studied in [19], where it was also indicated that problem (4.1), (4.2)
is not solvable in principle for arbitrary initial conditions. The study of the set of feasible
initial values, treated as the phase space of problem (4.1), (4.2), was initiated in [20, 21],
but only partial results were obtained in both papers. A complete description of the phase
space of problem (4.1), (4.2) is contained in [22].

To reduce problem (4.1), (4.2) to problem (0.1), (0.2), we set 4 = Ly and § = W, ' (all
spaces are defined on the domain 2). We define the operators L, M and F by the formulas

(Lu,v) = /(AUU = Ug, Vg, )T Vu,v GI'%'%:
Q

(Mu,v) = —a/ wvdr, (N(u),v)= —,8] vdvdz, Vu,v € Ly,
0 Q

where (-,-) is the L, inner product. The embedding [ié — L4 is dense and continuous for
n < 4, and so L € CI(Y;F). It is obvious that N € C®(4;F) by virtue of the embedding
(L4)* = L4;3 =¥ M’IQ‘_I.

By construction, the operator L is Fredholm of index zero (i.e. indL = 0. Moreover, the
spectrum o(L) of L is real and discrete, is of finite multiplicity, and accumulates only at
the point —oo. Let 0 ¢ o(L); then the projections P and @ satisfy P = @ = Q. Thus, all
assumptions of Theorem 3.1 are obviously satisfied, and hence the following theorem holds.

THEOREM 4.1. Let 0 € o(L) and n < 4. Then for each ug € Ly and for some ty = to(ug)
there exists a unique solution u € C*®((—to,t0); Ls) of problem (4.1), (4.2).

REMARK 4.1. One can readily see that under the assumptions of Theorem 4.1 the phase
space of the Hoff equation is the entire space Ly.

134



One class of semilinear Sobolev type equations and phase space

Now let 0 € o(L). We choose an Ly-orthonormal basis {1, ¢s,...,¢m} in the kernel
ker L. It readily follows that the phase space of the Hoff equation contains the points u € L,
such that

f(a-' + Bu)ugdr =0, o € ker L
Q

and moreover, one has the nonzero determinant

f(a' + 38u?)prpidz| # 0,

0

where k,1 =1,2,...,m. Let 9 be the set of solutions of Eq. (4.1) in Ly. We introduce the
set L={ueLy: (u,0)=0 1=12,...,m}.

LEMMA 4.1. Let 0 € o(L) and n < 4. Then for each v € £ there exists a unique vector
Y € ker L such that u=v +v € M.

THEOREM 4.2. Let 0 € o(L) and n < 4. Then for each ug € M and for some ty = to(up) €
R, there exists a unique solution u € C*((—to.1t0); M) of problem (4.1), (4.2).

REMARK 4.2. By virtue of Lemma 4.1 and Theorem 4.2, the phase space of the Hoff equation
is a stmple C*° manifold modeled on the space £.

EXAMPLE 4.2. The Oskolkov equations.
Let 2 C R" be a bounded domain with the boundary 02 of the class C*°. We will

seek a couple of functions (v(x, 1), p(x,t)) satisfyving the following system of equations in the
cylinder Q2 x R:

(1-¢eVHy =V —(v-Vu—-Vp, 0=-V(V-0) (4.3)

and the Cauchy—Dirichlet conditions
v(z,0) = vo(z), € v(z,t) =0, (z,t)€eIQUxR (4.4)
As in the previous case, we reduce problem (4.3), (4.4) to the problem (0.1), (0.2). For
this purpose similar to [23] let a set 4 = H2 x H2 x H,,, § = H, x H, x H,, H, = H, . The

element u € U is of the form u = (u,, ur, up), Uy = Xu, uy = Iu, u, = Vp; and the element

f € S has the form f = (fasfmfp)a fcr — Y‘f, f?r — nf

LEMMA 4.2. (i) Formula
A TAID O
L=| NAX TIAJ O
(@) O O
specifies the linear continuous operator L : 4 — §. If \™' ¢ o(A), thenker L = {0} x{0} xH,,

imL = H, x H, x {0}.
(ii) Formula
¥B ¥B O©
M=| IIB NIB -I
O C O

specifies the linear continuous operator M : 3 — §.
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LEMMA 4.3. The operator, given by formula

lies

—X(v V)
N:iu— | -II(v-Vv |, v=1u,+u;
o)
in C°°[]IT]I1;L2), ifn=23.
The projectors P and () have the forms

¥ 0 0 Y O —vEAB!
P=1 00 O and Q=| O O O :
0O 0 O O O O

where B, is the restriction of the operator B on H2.

=1

Using the projectors P and @ we construct the set M = {u € U : u; = 0, u, =
(ua ' V)Uo)}

THEOREM 4.3. Supposev € R, n=2,3, f € §, f = (fs, fr,0), then for every up € M
there exists a unique solution u € C™((—tg;to); M) for some ty € R, of the problem (4.3),

(4.4). The set M is the simple Banach C™®-manifold modeled by the subspace H: x{0} x {0}.
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